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1 Introduction

In Functional Analysis we care about different types of linear operators T : X → Y where X and Y are
Normed Linear Spaces. The purpose of Spectral Theory is to extend the ideas of eigenvalues and eigenvectors
from matrices to these linear operators. In Quantum Mechanics, this problem becomes interesting as we
consider X and Y to be infinite dimensional Hilbert Spaces H (often taken to just be L2([0, 1])), where true
eigenvectors don’t always exist for a given operator. As an example, consider the operator A defined by:

A : L2([0, 1]) � L2([0, 1])

(Aψ)(x) 7→ xψ(x)
(1)

A is self-adjoint since 〈Aφ,ψ〉 = 〈φ,Aψ〉, but A has no non-trivial eigenvectors in L2([0, 1]). If we
were to carry the idea of n × n self-adjoint matrices over to operators however, we would expect A to
have infinitely many eigenvalue, eigenvector pairs. For this reason, we extend the idea of eigenvectors to
generalized eigenvectors, which fulfill the eigenvalue equation Aψ = λψ but lie in a space outside of H.

2 Resolvent and Spectrum of an Operator

Definition 2.1: For a bounded operator A, the resolvent ρ(A) is the set of all λ ∈ C such that the bounded
operator Aλ = (A− λI) has a bounded inverse.

Definition 2.2: The spectrum, σ(A), is the complement of ρ(A) in C.

The spectrum is often broken into disjoint pieces called the point spectrum σp, the continuous spectrum
σc, and the residual spectrum σr depending on the properties of Aλ for λ in a given spectrum, however, we
will not care about this distinction.

Lemma 2.3: If A is bounded and self-adjoint, then for all λ = a+ bi ∈ C, 〈(Aλψ,Aλψ〉 ≥ b2〈ψ,ψ〉.

Proof.

〈(Aλψ,Aλψ〉 = 〈((A− λI)ψ, (A− λI)ψ〉
= 〈((A− (a+ bi)I)ψ, (A− (a+ bi)I)ψ〉
= 〈((A− aI)ψ, (A− aI)ψ〉+ ib〈(ψ, (A− aI)ψ〉 − ib〈((A− aI)ψ,ψ〉+ b2〈ψ,ψ〉
≥ b2〈ψ,ψ〉 �

Proposition 2.4: If A is bounded and self-adjoint, then σ(A) ⊂ R and λ ∈ R if and only if there exists
some sequence ψn ∈ H of nonzero vectors such that

lim
n→∞

‖Aψn − λψn‖
‖ψn‖

= 0 (2)
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Proof. Suppose λ = a + bi and b 6= 0. From Lemma 2.3, we know that 〈(Aλψ,Aλψ〉 ≥ b2〈ψ,ψ〉 > 0
which implies Aλ is injective. This is because ker(Aλ) = {0} and the operator is linear. Using the same
lemma, we can notice that Aλ̄ is also injective because it has a nonzero imaginary part. We also have
that Range(Aλ)⊥ = ker(Aλ̄) = {0} which implies Range(Aλ) is dense in H. Consider a φ ∈ H and take
{ψn} ⊂ Range(Aλ) such that φn = Aλψn and φn −→ φ. Since ‖ψn − ψm‖ ≤ b−1 ‖Aλ(ψn − ψm)‖ , ψn is
Cauchy. H is complete so ψn −→ ψ ∈ H.

Aλψ = lim
n→∞

Aλψn = lim
n→∞

φn = φ

so we have Range(Aλ) = H meaning Aλ is bijective and is boundedly invertible. For λ with this property,
λ ∈ ρ(A) which implies that λ /∈ σ(A). We conclude that all spectrum values of A are real.

Next, suppose there is some ψn ∈ H for which (2) holds and assume that Aλ is invertible. Then for
φn = Aλψn, we have ψn = A−1

λ φn which gives

lim
n→∞

‖Aψn − λψn‖
‖ψn‖

= lim
n→∞

‖Aλψn‖
‖ψn‖

= lim
n→∞

‖φn‖∥∥A−1
λ φn

∥∥ = 0

implying A−1
λ is unbounded meaning λ ∈ σ(A) ⊂ R. For the converse, if for λ ∈ R, there is not such a

sequence, we know there must be some ε > 0 such that ‖Aλψ‖ ≥ ε ‖ψ‖ for any ψ ∈ H. By the same argument
as before, Aλ is injective and we know that Range(Aλ) is dense in H and must have an inverse implying
equation (2) must hold. �

3 Projection-Valued Measures

We now know a good amount about the spectrum of a bounded self-adjoint operator. Following some defi-
nitions, we will be able to make a very strong statement regarding how we can decompose such operators.

Given some Borel set E ⊂ σ(A), which by Proposition 2.4 we know is entirely real, we want an idea of
a spectral subspace VE as the closed span of generalized eigenvectors for A with associated eigenvalues
λ ∈ E.

Intuitively, we can discern some properties that VE should have:

• Vσ(A) = H, since the span of all eigenvectors in the space should form a basis.

• V∅ = {0}, which is typical for the span of an empty set of vectors.

• If E∩F = ∅, then VE ⊥ VF , because we expect distinct eigenvectors to be orthogonal with one another.

• VE∩F = VE ∩ VF

• VE is invariant under A, since VE consists of eigenvectors of A.

• If E ⊂ [λ0− ε, λ0 + ε] and ψ ∈ VE , then ‖Aλ0ψ‖ ≤ ε ‖ψ‖ , which we include because our subspaces may
include generalized eigenvectors instead of true eigenvectors.

Definition 3.2: For a set X and σ−algebra Ω ⊂ X, we call the map µ : Ω � B(H) a projection-valued
measure if it satisfies the following properties:

• µ(E) is an orthogonal projection for all Borel sets E ∈ Ω

• µ(∅) = 0 and µ(X) = I

• If E1, E2, E3, ... in Ω are disjoint, then for all v ∈ H,

µ(

∞⋃
i=1

Ei)v =

∞∑
i=1

µ(Ei)v
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This idea of projection-valued measures allows us to consider subsets E of our spectrum and find a pro-
jection onto the generalized eigenvectors in the associated subspace VE . Such an object allows us to break
our space into pieces and integrate over them to obtain a new re-weighted operator. Before doing this, we
need to notice that for a projection-valued measure µ and ψ ∈ H, a real valued measure µψ(E) = 〈ψ, µ(E)ψ〉
can be defined for all E ∈ Ω. This allows us to associate each projection-valued measure with an ordinary
measure to integrate over.

Proposition 3.3 If Q is a bounded quadratic form on H, there is a unique bounded linear operator A
on H such that Q(ψ) = 〈ψ,Aψ〉 for all ψ ∈ H. If Q(ψ) belongs in R for all ψ ∈ H, then A is self-adjoint.

Proof. A proof is given in the appendix A. 63 of [1].

Proposition 3.4 For a set X, σ−algebra Ω ⊂ X, and projection-valued measure µ : Ω � B(H), we can
uniquely associate bounded, measurable, complex-valued functions f with some operator ∫Ω fdµ such that

〈ψ, (
∫
X

fdµ)ψ〉 =

∫
X

fdµψ (3)

Such an integral must also have the following:

•
∫
X

1Edµ = µ(E), where 1E is the characteristic function of E. That is, the integral over some subset
E will give us the projection onto its associated spectral subspace VE .

• For all bounded, measurable f on Ω, ∥∥∥∥∫
X

fdµ

∥∥∥∥ ≤ sup
λ∈X
|f(λ)| (4)

• For all bounded, measurable f and g on Ω,∫
X

fgdµ = (

∫
X

fdµ)(

∫
X

gdµ) (5)

• For all bounded, measurable f on Ω, ∫
X

f̄dµ = (

∫
X

fdµ)∗ (6)

Proof. Given a projection-valued measure µ and bounded, measurable function f, we define Qf : H→ C by

Qf (ψ) =

∫
X

fdµψ

which for characteristic functions 1E , we know is a bounded quadratic form. By Proposition 3.3, we have
that Qf (ψ) = 〈ψ,Afψ〉 for some unique bounded operator Af and all ψ ∈ H. If we define Af =

∫
X
fdµ,

we satisfy (3) and give uniqueness to the map f 7→
∫
X
fdµ by the same proposition. Since Qf is bounded

quadratic for characteristic functions it will also be bounded quadratic for any bounded measurable f in
general. We can also see that

|Qf (ψ)| ≤ (sup
λ∈X
|f(λ)|) ‖ψ‖2

which can be used to show (4). For (5), we have multiplicativity of the integrals at a characteristic function
level and can expand on this idea to show the property for all bounded measurable f and g. Lastly, we notice
that for real-valued f, Qf (ψ) will be real valued implying Af is self-adjoint by Proposition 3.3. Further
details of this proof are given in [1].

�
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4 Spectral Theorem

Theorem 4.1 (Spectral Theorem for Bounded Self-Adjoint Operators) For a bounded, linear, self-
adjoint operator A on H, there exists a unique projection-valued measure µA on the Borel σ−algebra Ω for
σ(A) such that ∫

σ(A)

λdµA(λ) = A (7)

Although a proof of this statement will not be given explicitly, the idea is that we are using the bounded
function f(λ) := λ on σ(A) along with the operator-valued integration described in Proposition 3.4 equation
(3). This statement is particularly useful in that it allows us to decompose bounded, linear, self-adjoint
operators A and given a meaningful definition of applying to functions to such operators.

Definition 4.2 For a bounded, linear, self-adjoint operator A onH and a bounded measurable f : σ(A)→ C,
we can define an operator

f(A) =

∫
σ(A)

f(λ)dµA(λ) (8)

Considering the Spectral Theorem for compact self-adjoint operators, we can see where this might be
useful in regards to Quantum Mechanics.

Theorem 4.3 (Spectral Theorem for Compact Self-Adjoint Operators) Let T : H → H be a
compact, self-adjoint operator. Then there exists an orthonormal basis {vα}α∈I for H such that each vα is
an eigenvector for T. Moreover, for every x ∈ H,

Tx =
∑
α∈I

λα(x, vα)vα

where λα is the eigenvalue corresponding to vα

A proof of this Theorem is covered in [2]. Something to notice though, is the ability to decompose our
operator T when it is compact and self-adjoint. Most quantum operators however, are not compact (1)
so we needed a stronger theorem to utilize to do the same for operators we care about which can be done
for bounded self-adjoint operators with (8). Unfortunately, many quantum operators are also unbounded,
requiring an even stronger notion of a ’Functional Calculus’ in order to decompose them.

A specific example of this is using Spectral Theory to make sense of the solution to the time-dependent
Schrodinger equation. One method of ’solving’ the equation is setting ψ(t) = exp{−itĤ/~}ψ0. Typically,
we might try to define this as a power series expansion of ex however the Hamiltonian operator Ĥ is un-
bounded and will cause such an expansion to diverge. If Ĥ has true eigenvectors which form an orthonormal
basis {ψk} ⊂ H, we can define the operator to be one such that

e−itĤ/~ψk = e−itλk/~ψk

As we’ve seen in the introduction though, not all operators we care about have a set of true eigenvectors.
Instead, we use some version of (8) for unbounded operators to get a well-defined alternative to this.
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